The Possible Protective Role of Candesartan on Cyclosporine Induced Nephrotoxicity in Rats

HANAN T. EMAM, M.D.*; ABDELMONEM G. MADBOLY, M.D.**; ABEER A. SHOMAN, M.D.*** and NOHA I. HUSSEIN, M.D.***
The Departments of Clinical Pharmacology & Therapeutics*, Forensic Medicine & Clinical Toxicology** and Physiology***, Faculty of Medicine, Benha University, Egypt

Abstract

Cyclosporine A (CsA), a fungal undecapeptide, is the most common immunosuppressive drug used in organ transplantation and autoimmune diseases. However, nephrotoxicity is the major adverse effect of CsA use. The molecular mechanisms of CsA nephrotoxicity are not well characterized, but more recent studies suggest an involvement of angiotensin II (ANG II) and reactive oxygen species in the development of cyclosporine nephrotoxicity. This study was thus designed to investigate the role of angiotensin II type 1 (AT1) receptor antagonist, candesartan, on CsA- induced nephrotoxicity. Three groups of rats were employed in this study; group 1 served as control, group 2 rats were treated with CsA (20mg/kg/day subcutaneously) for 21 days, and group 3 received CsA along with candesartan (1mg/kg/day perorally) 24 hr before and 21 days concurrently. Renal blood flow (RBF) were estimated by flowmeter. Estimation of plasma renin activity, serum creatinine, blood urea and tissue malondialdehyde content by using colorimetric methods. Renal tissue specimens were histopathologically examined by hematoxylin & eosin staining. CsA administration for 21 days resulted in a marked renal impairment and significantly decreases (RBF), deranged the renal functions as well as renal morphology. All these factors were significantly improved by candesartan. These results clearly demonstrate the pivotal role of AT1 receptor antagonist candesartan in CsA- induced nephrotoxicity.

Key Words: Cyclosporine — Nephrotoxicity — Candesartan — Angiotensin — Renin.

Introduction

Due to its potent immunosuppressive effects, cyclosporine (CsA) has improved allograft survival in organ transplantation and has been applied increasingly with considerable clinical benefit in the treatment of autoimmune diseases. Unlike most other immunosuppressive agents, cyclosporine has no depressant effects on the bone marrow. However, the therapeutic benefits of cyclosporine have been frequently limited by the occurrence of acute and chronic nephrotoxicity, which is the most serious common side effect. Cyclosporine nephrotoxicity therefore remains an important clinical challenge.

It has been suggested that activation of the renin-angiotensin system is involved in the pathogenesis of CsA-induced nephrotoxicity. Angiotensin receptor blocker (ARB) as irbisartan is effective in preventing CsA- induced vascular and renal adverse effects [2].

Candesartan cilexetil; an inactive ARB prodrug, which hydrolyzed to active form during absorption from GIT, due to its tight binding to AT1 receptor it has longer activity than other members of ARBs [3].

This study was thus designed to investigate the role of AT1 receptor antagonist, candesartan, on CsA-induced nephrotoxicity.

Material and Methods

Animals:

Twenty four male adult albino rats of locally breaded strain weighing between 150-250g, at the beginning of the study, were used. They have been acclimatized for one week in groups (8/cage) in fully ventilated room at ordinary room temperature in pharmacology department, Benha Faculty of Medicine. Rats were allowed to adlibitum access to water and balanced diet. All experimental protocols were approved by the Ethical Committee of Benha University during September 2012.
Study groups:

At the beginning of the experiment, rats were randomly divided into 3 groups, each of them consisted of 8 rats:

- **Group 1:** Control normal rat.
- **Group 2:** (Cyclosporine nephrotoxic group): Rats of this group were received cyclosporine in a dose of 20 mg/kg daily SC for 21 days [4].
- **Group 3:** (Candesartan treated group): Rats of this group were given the same dose of cyclosporine for 21 days along with candesartan 1 mg/kg daily orally, 24 hours before and 21 days concurrently with cyclosporine treatment [4].

All drugs and chemicals were freshly prepared before each experiment.

All groups were subjected to the following investigations:

- Estimation of plasma renin activity [6].
- Estimation of blood urea [7].
- Estimation of serum creatinine [8].
- Estimation of tissue malondialdehyde (MDA) content [9].
- Histopathological studies [4].

At the end of the experiment, rats were anaesthetized with urethane (0.6ml/100gm of 25% freshly prepared solution), of about the abdominal cavity was opened, blood sample were collected from abdominal aorta and processed for biochemical measurements. The kidneys were exposed, removed and divided into 2 parts. One part was placed in 10% formalin for histopathological examination. The second part was kept at 70 C° and used for biochemical measurement of MAD.

Statistical analysis:

All data were expressed as mean±S.E, data were evaluated by the one way analysis of variance. Difference between groups were compared by Student’s t-test with p<0.05 selected as the level of statistical significance [10].

Results

Effect of candesartan on cyclosporine induced nephrotoxicity in rats:

- **The effect on RBF:**

 There was significant (p<0.05) reduction of RBF from a mean of 9.4±1.13cm/s in control normal rats to a mean of 4.14±0.11cm/s in rats received cyclosporine only, (Table 1) (Figs. 1,6,7).

 RBF was significantly increased from a mean of 4.14±0.11cm/s in cyclosporine treated rats to a mean of 8.02±0.6cm/s in candesartan treated group, (Table 1) (Figs. 1,7,8).

- **Plasma renin activity:**

 The mean value of plasma renin activity in control normal rats was 1.50±0.06 ng/ml/h. In rats received cyclosporine only this value was significantly elevated (p<0.05) to reach 4.37±0.08 ng/ml/h. The mean value of plasma renin activity in candesartan treated group was insignificantly increased (p 0.05) to 4.58±0.09 ng/ml/h in comparison to the corresponding value of cyclosporine treated rats, (Table 1) (Fig. 2).

- **Blood urea level:**

 The mean value of blood urea level in control normal rats was 20.4±2.1mg/dl. In rats received cyclosporine only this value was significantly elevated (p<0.05) to reach 49.8±4.2mg/dl. The mean value of blood urea level in candesartan treated group was significantly decrease (p<0.05) to 31.8±2.2 mg/dl, in comparison to the corresponding value of cyclosporine treated rats, (Table 1) (Fig. 3).

- **Serum creatinine level:**

 The mean value of serum creatinine level in control normal rats was 0.50±0.06mg/dl. In rats received cyclosporine only this value was significantly elevated (p<0.05) to reach 1.38±0.08 mg/dl. The mean value of serum creatinine level in candesartan treated group was significantly decreased (p<0.05) to 0.58±0.06mg/dl in comparison to the corresponding value of cyclosporine treated rats, (Table 1) (Fig. 4).

- **Tissue MDA level:**

 The mean value of MDA level in control normal rats was 7.50±0.06 gM/g. In rats received cyclosporine only this value was significantly elevated (p<0.05) to reach16.38±1.8 gM/g. The mean value of MDA level in candesartan treated group was significantly decreased (p<0.05) to 10.58±1.06 g,M/g in comparison to the corresponding value of cyclosporine treated rats, (Table 1) (Fig. 5).

- **Histopathological examination:**

 Renal sections of control group showed normal glomeruli & tubules and absence of any calcification, (Fig. 9).

 It was noticed that cyclosporine induced tubular degeneration and vaculation, hyalinosis of basement membrane of glomeruli and renal tubules. Also, there was patchy dystrophic calcification at the
corticomedullary junction and in the dilated tubules indicating nephrocalcinosis, (Figs. 10, 11).

In the candesartan treated rats, the rats, the hyaline degeneration of tubular and glomular basement membrane was markedly decreased, tubular atrophy and vaculation was much less evident. No calcification was found in the renal interstitium or in the tubules with treatment, (Figs. 12, 13).

Table (1): Mean±S.E.M. of RBF cm/s, Plasma renin activity ng/ml/h, Blood urea level, serum creatinine level in mg/di and tissue MDA level nM/g. In control group, cyclosporine nephrotoxic group and candesartan treated group (n=8).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1 (control group)</th>
<th>Group 2 (cyclosporine nephrotoxic group)</th>
<th>Group 3 Candesartan treated group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF cm/s</td>
<td>9.4±0.08</td>
<td>4.14±0.11*</td>
<td>8.02±0.6**</td>
</tr>
<tr>
<td>Plasma renin activity ng/ml/h</td>
<td>1.52±0.06</td>
<td>4.37±0.08*</td>
<td>4.58±0.09#</td>
</tr>
<tr>
<td>Blood urea level mg/di</td>
<td>20.4±2.1</td>
<td>49.8±4.2*</td>
<td>31.8±2.2**</td>
</tr>
<tr>
<td>Serum creatinine mg/di</td>
<td>0.5±0.06</td>
<td>1.38±0.08*</td>
<td>0.58±0.06**</td>
</tr>
<tr>
<td>Tissue MDA level nM/g</td>
<td>7.5±0.6</td>
<td>16.3±1.2*</td>
<td>10.58±1.06**</td>
</tr>
</tbody>
</table>

*: Significant compared to control group.
**: Significant compared to cyclosporine nephrotoxic group.
: In significant compared to cyclosporine nephrotoxic group.

Fig. (1): A histogram showing the effect of candesartan treatment on RBF cm/s compared to cyclosporine nephrotoxic group.

Fig. (2): A histogram showing the effect of candesartan treatment on plasma renin activity ng/ml/h compared to cyclosporine nephrotoxic group.

Fig. (3): A histogram showing the effect of candesartan treatment on blood urea level mg/di compared to cyclosporine nephrotoxic group.

Fig. (4): A histogram showing the effect of candesartan treatment on serum creatinine mg/di compared to cyclosporine nephrotoxic group.

Fig. (5): A histogram showing the effect of candesartan treatment on tissue MDA level nM/g compared to cyclosporine nephrotoxic group.
The Possible Protective Role of Candesartan

Fig. (6): A trace showing RBF in control normal rat.

Fig. (7): A trace showing RBF in cyclosporine nephrotoxic rat.

Fig. (8): A trace showing RBF in candesartan rat.

Fig. (9): Cut section of rat kidney of control group showing normal glomeruli and tubules (H&E x100).
Hanan T Emam, et al.

Fig. (10) Fig. (11)

Figs. (10&11): Cut section of rat kidney of cyclosporine nephrotoxic group showing cyclosporine induced changes in the form of tubular degeneration (a), vaculation and hyalinosis of the glomerular basement membrane (b) (H&E x40).

Fig. (12) Fig. (13)

Figs. (12&13): Cut section of rat kidney of candesartan treated group showing restoration of the tubular (a) and glomerular (b) structure to a very large extent (H&E x40).

Discussion

Cyclosporine is established as the immunosuppressant of choice in human organ transplantation, because it improves graft survival and is not associated with myelosupression. Unfortunately, CsA can lead to a wide spectrum of nephrotoxic complications. Both functional and structural changes in the kidney of transplant patients and experimental animals have been reported [2].

The data of the present work revealed that daily administration of CsA 20mg/kg/day S.C. For 21 days produced significant reduction of renal blood flow, significant elevation of blood urea and serum creatinine levels. Histopathological examination of renal sections demonstrated that CsA produced tubular atrophy of the proximal convoluted tubules, interstitial fibrosis, hyalinosis of vascular basement membrane and nephrocalcinosis at the corticomedullary junction and calcified concretions in the tubules.

These results are in agreement with [11,12]. They reported that, CsA reduce glomerular filtration rate and renal blood flow by causing vasoconstriction of the glomerular afferent arterioles.

Meanwhile [14], reported that CsA causes a dose related decrease in renal function in experimental animals. It produced a significant increase in serum creatinine and blood urea and a significant decrease in creatinine clearance.

[11] reported that in chronic CsA induced nephrotoxicity, the main histological findings in the kidney are the vascular lesions in the endothelium and smooth muscle cells, severe atrophy, vacuolization and thickening of the basal membrane can be found.
Moreover, [15] observed that chronic CsA administration leads to loss of proximal tubular epithelial cell integrity and tubular atrophy, a variable interstitial injury with secondary fibrosis.

[16] reported that corticomedullary calcification was seen with CsA. Calcified laminated concretions in tubules and microlcalfication of single tubular cells were also seen with CsA.

[17] reported that chronic cyclosporine nephrotoxicity is characterized by interstitial fibrosis and afferent arteriolar hyalinosis.

In the present work, it was observed that daily oral administration of candesartan 24 hour before and 21 days along with CsA significantly increase renal blood flow, prevented CsA induced elevation in blood urea and serum creatinine. Histopathological examination of renal sections of candesartan treated group revealed marked improvement as no calcification was detected at all, tubular and hyalinosis of the blood vessels were much less evident.

These results are in agreement with [4] who reported that candesartan inhibited the increase in blood urea and serum creatinine induced by CsA.

[18] concluded that candesartan cilexetil can effectively control hypertension and proteinuria without deterioration in renal allograft function. These data suggest that treatment with candesartan cilexetil may be useful for maintaining long-term renal allograft function.

[19] reported that up regulation of vascular endothelial growth factor seem to be related up regulation of angiotensin II in cyclosporine nephrotoxicity.

When renal blood flow is substantially reduced, angiotensin II contributes to the maintenance of glomerular filtration rate by constricting the efferent glomerular arterioles. In such condition, dilation of the efferent arterioles by inhibitors of the renin-angiotensin system may potentiate the reduction in glomerular filtration rate.

Captopril and saralasin have previously been shown to increase glomerular filtration rate and renal blood flow in CsA treated normotensive rats [20]. Enalapril was also able to prevent the CsA-induced decline in glomerular filtration rate in diabetic patients [21].

The exact mechanism of CsA-induced nephrotoxicity is not known, but there are several lines of evidence suggesting an involvement of the renin-angiotensin system [4]. This is also supported by our study through the finding that plasma renin activity was higher in the CsA-treated than in the control group. CsA has been reported to stimulate renin production and release in isolated juxtaglomerular cells [22]. An increase in plasma renin activity has been demonstrated in CsA-Treated rats either on sodium depletion [3], on standard chow [23], or during high intake of sodium [24,25].

CsA has also been reported to elevate plasma angiotensin II levels [26]. Furthermore, long-term treatment with CsA upregulates AT1 receptors in vascular and renal tissue [27] and increases vasoconstrictive effect of angiotensin II [28,29].

Chronic administration of angiotensin II in rats produces renal injury similar to that observed in CsA nephropathy [30,31]. Both angiotensin II and CsA cause an overexpression of transforming growth factor (TGF-b1), a cytokine which has been implicated in the pathophysiology of many fibrotic diseases of the kidney and other organs [31,32]. In addition, tubulointerstitial expression of osteopontin, an adhesion molecule associated with renal fibrosis, is increased by both angiotensin II [30] and CsA [32]. Thus, activation of the renin-angiotensin system by CsA may be at least partly responsible for the interstitial fibrosis through stimulation of TGF-b1 and osteopontin expression. This is also supported by the finding that the AT1 receptor antagonist losartan reduced the CsA-induced interstitial fibrosis concomitantly with decreased renal TGF-b1 and betaig-h3 expression [15].

[19] reported that the increased VEGF expression in chronic CsA nephrotoxicity seems to be related to up-regulation of Ang II. In addition, VEGF probably exerted its effect via the KDR/FLK-1 receptor, the actions of VEGF in this model remain speculative, but may be related to its effect on macrophage infiltration or matrix deposition.

The role of reactive oxygen species formation in the CsA induced impairment of renal function has been suggested by [33] [16]. Observed that oxygen free radicals are one of different mediators for CsA induced nephrotoxicity. There was increased production of the lipid peroxidation product malonaldehyde (MDA) with CsA indicating the oxidative stress associated with CsA nephrotoxicity. [34] Reported that melatonin, through its antioxidant properties, significantly antagonized CsA induced renal impairment.

[35] showed that curcumin attenuates cyclosporine induced renal dysfunction and oxidative stress in rat kidneys through its antioxidant properties.
observed that ANG II induces oxidative stress in vitro and in vivo and demonstrated the pivotal role of AT1 receptor blocker (irbesartan) in amelioration of cyclosporine nephrotoxicity through its antioxidant properties.

Thus, it is suggested that candesartan produces nephroprotective effect in the rat model of CsA induced nephrotoxicity. This nephroprotection of candesartan is based on a combination of angiotensin receptor antagonism, improvement of endothelial function and its potent antioxidant properties.

Acknowledgment:

Our deep gratitude and appreciation to Dr. Ghada Ahmed Abd El Fattah, lecturer of pathology, faculty of medicine, Benha university for her great help and valuable constructive cooperation in the histopathological part.

References

