Clinical Correlation between the Amount of Spontaneous Subarachnoid Hemorrhage and the Patient Need for Ventriculo-Peritoneal Shunt

AHMED M. ALI, M.D.
The Department of Neurosurgery, Faculty of Medicine, Cairo University

Abstract

Objective: Clinical assessment between degree of subarachnoid bleeding and patients need for ventriculo-peritoneal shunts.

Patients and Methods: Thirty cases were involved in this study, from May 2010 to May 2011 at Kasr El Aini Emergency Department. All cases had full examination as regard history, clinical examination, CT on admission, CT F/U every 48 hrs for 2 weeks, lm and 3m after the attack, CT angiography or 4 vessels angiography.

Results: 4 cases had Gr. II bleeding, 14 cases had Gr. III and 12 cases had Gr. IV.

Sixteen cases had V-P shunt and 14 cases had no V-P shunt.

Conclusion: We did not experience a big difference between cases with high grade bleeding that need shunt and cases that need no shunt, only 4 cases (15.4%) is the difference between the two groups and may be there are other factors that may affect the patients with subarachnoid hemorrhage to have v-p shunts for hydrocephalus. Such as vasospasm and the patients neurological status.

Key Words: Subarachnoid hemorrhage — Fisher grade — Ventriculo-peritoneal shunt.

Introduction

A subarachnoid hemorrhage is bleeding into the subarachnoid space, the area between the arachnoid membrane and the pia mater surrounding the brain.

Symptoms of SAH include a severe symptoms of SAH include severe headache with a rapid onset ("thunderclap headache"), vomiting, confusion or a lowered level of consciousness, and sometimes seizures [ii.

SAH is a form of stroke and comprises 1-7% of all strokes [2]. It is a medical emergency and can lead to death or severe disability. Up to half of all cases of SAH are fatal and 10-15% die before reaching a hospital, and those who survive often have neurological or cognitive impairment [3].

As a result of the bleeding, the body releases large amounts of adrenaline. This leads to a sharp increase in the blood pressure; the heart comes under substantial strain, and neurogenic pulmonary edema. Cardiac arrhythmias [4,5].

Causes:

In 85% of cases of spontaneous SAH, the cause is rupture of a cerebral aneurysm ill. In 15-20% of cases of spontaneous SAH, no aneurysm is detected on the first angiogram [6]. About half of these are attributed to non-Aneurismal perimesencephalic hemorrhage [ii. The remainder are due to other disorders affecting the blood vessels (such as arteriovenous malformations), disorders of the blood vessels in the spinal cord, and bleeding into various tumors Hi. Cocaine abuse and sickle cell anemia (usually in children) and, rarely, anticoagulant therapy.

This may occur spontaneously, usually from a ruptured cerebral aneurysm, or may result from head injury, problems with blood clotting and pituitary apoplexy can also result in SAH [6].

Diagnosis:

The modality of choice is computed tomography (CT scan) of the brain. Magnetic resonance imaging (MRI) may be more sensitive than CT after several days [ii.
After a subarachnoid hemorrhage is confirmed, its origin needs to be determined, the choice is between cerebral angiography and CT angiography [1,3].

The Fisher Grade classifies the appearance of subarachnoid hemorrhage on CT scan. This scale has been modified by Claassen and coworkers, reflecting the additive risk from SAH size and accompanying intraventricular hemorrhage [7].

<table>
<thead>
<tr>
<th>Fisher grade</th>
<th>Appearance of hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None evident</td>
</tr>
<tr>
<td>II</td>
<td>Less than 1mm thick</td>
</tr>
<tr>
<td>III</td>
<td>More than 1mm thick</td>
</tr>
<tr>
<td>IV</td>
<td>Any thickness with intraventricular hemorrhage or parenchymal extension</td>
</tr>
</tbody>
</table>

Patients and Methods

Thirty cases were involved in this study, 15 males and 15 females, from May 2010 to May 2011, at the Emergency Department, of Kasr EL-Aini Medical School, age was ranging from 25 yrs upto 65 yrs. All cases had full examination as regard history, clinical examination, CT on admission, CT angiography or 4 vessels angiography and CT f/u after 48 hrs for 2 weeks, 1 month and 3 month. Patients neurological status were evaluated according to Hunt and Hess grading. Patients with deteriorated neurological status Hunt & Hess grade zero upto grade III and had hydrocephalus have gone under conservative treatment, patients with grade more than III and had hydrocephalus had v-p shunts.

Results

Thirty cases were involved in this study, 15 males and 15 females, age was ranging from 25 yrs upto 65 yrs, with mean age of 45 yrs. 4 cases (13.3%) had Gr. II bleeding, 14 cases (46.7 %) had Gr. III and 12 cases (40%) had Gr. IV. Sixteen cases (53.3%) had v-p shunt and 14 cases (47.7%) had no V-P shunt. From 16 cases had V-P shunt, 1 case (3.3%) had Gr. II bleeding, 9 cases (30%) had Gr. III and 6 cases (20%) had Gr. IV. From 14 cases had no v-p shunt,3 cases had Gr.II bleeding (10%), 5 cases (16.7%) had Gr.III and 6 cases (20%) had Gr. IV bleeding. According to Hunt and hess grading. There were 20 cases (66.6%) were Gr. II, 2 cases had had Gr. II bleeding, 16 cases were Gr. III and 2 cases were Gr. IV. There were 7 cases (23.3%) had Gr. III, 2 cases were Gr. II bleeding and 5 cases had Gr. III bleeding. There were 2 cases (6.7%) had Gr. IV bleeding and finally there was 1 case Gr. I, had Gr. III bleeding.

Discussion

Spontaneous subarachnoid hemorrhage (hemorrhage between pia and arachnoid matter of the brain) has many causes, one of the major causes is rupture of vascular lesions such as aneurysms or arterio-venous malformation. Subarachnoid hemorrhage can lead to acute hydrocephalus by obstruction of CSF pathway or chronic hydrocephalus by development of subarachnoid gliosis.

Thirty cases of subarachnoid hemorrhage with variable grades of bleeding according to Fischer grade enrolled in our study from May 2010 to May 2011.

Sixteen cases had v-p shunt (53.3%) 15 cases for acute hydrocephalus and one case for chronic hydrocephalus after 1.5 month. From our study we have noticed that cases with high grade bleeding III, IV were 26 cases, 15 cases (57.7%) had operated by v-p shunt and 11 cases (42.3%) had no shunt, 4 cases with gr. II only one case had shunt (25%) and 3 cases (75%) had no shunt.

We also got that 9 cases from 14 cases with gr. III bleeding had shunt (64.3%) and 6 cases from 12 cases with gr. IV had shunt (50%), more bleeding in subarachnoid space is more influencial to develop hydrocephalus than less bleeding in sub-arachnoid space with parenchymal or intraventricular exten-

Conclusion:

Hydrocephalus is one of the major secondary complications of subarachnoid hemorrhage. We did not experience a big difference between cases
with high grade bleeding that need shunt and cases that need no shunt, only 4 cases (15.4%) is the difference between the two groups and may be there are other factors that may affect the patients with subarachnoid hemorrhage to have v-p shunts for hydrocephalus, such as vasospasm and the patient neurological status.

References

