Comparison between Posterior Corneal Surface Changes after LASIK Measured by Sirius Pentacam and Orbscan IIz

AHMED F. HEIKAL, M.Sc.; WALEED A. ALLAM, M.D.; MOATAZ M. SABRY, M.D. and KHALED A. NAGY, M.D.

The Department of Ophthalmology, Faculty of Medicine, Tanta University, Egypt

Abstract

Purpose: To investigate the reliability of Sirius Pentacam and Orbscan in evaluating posterior corneal surface changes after LASIK.

Methods: This prospective observational case series study was conducted on thirty eyes of 15 patients underwent LASIK for myopia with or without myopic astigmatism at both the Ophthalmology Department of Tanta Universal Teaching Hospital and Nour El-Ein Hospital. OrbscanIIz and Sirius Pentacam examination (CSO, Firenze, Italy) were performed after LASIK to study their reliability in evaluating posterior corneal surface changes after LASIK.

Results: The mean elevation of the highest points on posterior corneal elevation maps after LASIK by Orbscan and Sirius was 35.47 ± 11.6 µm (range from 14 µm to 49 µm) and 9 ± 2.9 µm (range from 5 µm to 16 µm) respectively with no statistically significant difference between the values measured by the two methods (p-value 0.06). Regarding the maximal highest point on posterior corneal elevation maps by Orbscan and Sirius was 50 µm and 17 µm respectively, the difference of means by Orbscan and Sirius was 14.53 and 8 respectively, the limits of agreement from –8.2 to 37.3 by Orbscan and 2.4 to 13.6 by Sirius respectively. The coefficient of repeatability was 36.20% by Orbscan and 16.60% Sirius, hence Orbscan is better than Sirius.

Conclusions: There was no statistically significant difference between the values measured by Orbscan IIz and Sirius (p-value 0.06). The coefficient of repeatability was 36.20% by Orbscan and 16.60% Sirius, hence Orbscan is better than Sirius. Surface irregularity has benefit to detect abnormal corneal topography with normal value about ±2 within 3mm zone or ±2.5 within 5mm zone. It is not present in Sirius but only Orbscan and this is one of advantages of Orbscan.

Key Words: Lasik – Posterior surface of the cornea – Orbscan II – Pentacam.

Introduction

LASIK (Laser-Assisted In-Situ Keratomileusis) aims to change the shape of the anterior surface of the cornea, thus changing its refractive power. This surgical procedure does not affect the posterior surface of the cornea directly and a large proportion of the optical changes can be explained at the anterior corneal surface level. Increase in posterior corneal curvature resulting from forward bulging of the cornea after LASIK has been reported [1,2].

Corneal ectasia is a serious complication after laser refractive surgery. This complication may progress to myopic regression, decreased visual acuity and corneal thinning which may eventually require corneal transplantation for visual rehabilitation. Because investigators suggest that changes in the posterior corneal shape are key to early recognition of corneal ectasia, it is important for clinicians to have an accurate method of studying posterior corneal elevation in post-LASIK patients [3,4].

In 1995, the Orbscan (Bausch & Lomb) was introduced. The original Orbscan used slit-scanning technology. A later model, the Orbscan II (Bausch & Lomb), combined slit scanning with a Placido disk device. The curvature and elevation of the anterior and posterior corneal surfaces can be assessed with the Orbscan II. The Pentacam uses a rotating Scheimpflug camera to measure the anterior and posterior corneal surfaces [5].

Aim of work:

The aim of this study is to investigate the reliability of Sirius Pentacam and Orbscan IIz in evaluating posterior corneal surface changes after LASIK.

Study design:

Prospective observational case series study was conducted on thirty eyes of 15 patients underwent LASIK for myopia with or without myopic astig-
Comparison between Posterior Corneal Surface Changes after LASIK Measured

Patients and Methods

This prospective observational case series study was conducted on thirty eyes of 15 patients underwent LASIK for myopia with or without myopic astigmatism at both the Ophthalmology Department of Tanta Universal Teaching Hospital and Nour El-Ein Hospital from April 2016 till October 2016.

Inclusion criteria:

- Patients with myopia less than –8.00D with or without myopic astigmatism less than –3.00D.
- Residual bed thickness not less than 300 µm (calculated by subtracting the flap thickness and the calculated laser ablation depth for the particular refraction from the preoperative minimum corneal thickness).
- Age not less than 18 years.
- Refractive stability for at least 1 year before the procedure within ±0.5D over a period of 12 months.
- Pachymetry not less than 500 µm.

Exclusion criteria:

- Keratoconus and forme-fruste keratoconus.
- Patients with abnormal front or back elevations of the cornea.
- Patients with too flat (less than +39.00D) or too steep corneas (more than +48.00D).
- Previous ocular or refractive surgery.
- Patients with corneal opacities or scars.
- Patients with lens opacities.
- Pregnant and lactating women.
- Severe Dry Eye Syndrome (DES).
- Chronic intraocular inflammations.
- Patients with other ocular disease: glaucoma, retinal detachments or optic nerve disease.

Preoperative evaluation:

All patients were subjected to:

1- History:

Age-gender-previous history of herpetic keratitis-previous ocular or refractive surgery-previous use of contact lenses or eye drops-previous history of trauma.

2- Examination:

- Slit-lamp examination of the anterior segment for:
 A- Searching for signs of dry eye and tear film assessment (tear meniscus and breakup time), detailed examination of the cornea to rule out undiagnosed corneal dystrophies, allergic conjunctivitis, other pathologies of the conjunctiva and sclera.
 B- Pupillary light reaction both direct and consensual and diameters in light and dim situations.
 C- Intraocular pressure was measured using Goldmann applanation, to exclude glaucoma.
- External examination: to assess the eyelids, and orbit depth and possible obstacles for fitting the microkeratome.
- Ocular motility and assessment of phorias and tropias, confrontational visual field test.
- Manifest and cycloplegic refraction assessment.
- Measurement of the Uncorrected and Corrected Distance Visual Acuity (UDVA & CDVA).
- Fundus biomicroscopy: Detailed examination was made to reveal signs of diabetic retinopathy, maculopathy or optic nerve disease. Together with examining the periphery to exclude retinal detachment or peripheral retinal lesions, that may increase the risk of retinal detachment.
- Contact lens wearers were instructed to discontinue them for at least 2 weeks before the Pentacam and OrbscanIIz examination.
- Pre-operative corneal topography was a must to determine cases of keratoconus, KC suspect or irregular astigmatism for exclusion.

Results

Statistical analysis:

Statistical analysis data was analyzed using SPSS (Statistical Package for Social Sciences) V16.0 (SPSS Inc., Chicago, USA). Qualitative data was presented as number and percent. Comparison between groups was done by Chi-Square test. Quantitative data was presented as mean ± SD. Student t-test was used to compare between two groups. p<0.05 was considered to be statistically significant. The Coefficient of Repeatability (CR) can be calculated as 2 times the standard deviation of the differences between the two measurements (d2 and d1).

This prospective observational case series study was conducted on thirty eyes of 15 patients under-
went LASIK for myopia with or without myopic astigmatism to investigate the reliability of Sirius Pentacam and Orbscan IIz in evaluating posterior corneal surface changes after LASIK.

Tomographic data:

The mean elevation of the highest points on posterior corneal elevation maps after LASIK by Orbscan and Sirius was 35.47±11.6 µm (range from 14 µm to 49 µm) and 9±2.9 µm (range from 5 µm to 16 µm) respectively with no statistically significant difference between the values measured by the two methods (p-value 0.06).

Regarding the maximal highest point on posterior corneal elevation maps by Orbscan and Sirius was 50 µm and 17 µm respectively, the difference of means by Orbscan and Sirius was 14.53 and 8 respectively, the limits of agreement from –8.2 to 37.3 by Orbscan and 2.4 to 13.6 by Sirius respectively. The coefficient of repeatability was 36.20% by Orbscan and 16.60% Sirius, hence Orbscan is better than Sirius see (Table 2) and Figs. (1,2).

The mean value of the thinnest location after LASIK measured by Orbscan and Sirius was 465.87±47.8 µm (range from 406 µm to 472 µm) and 465.37±41.7 µm (range from 430 µm to 559 µm) respectively with no statistically significant difference between the values measured by the two methods see Fig. (3).

Topographic data:

The mean K1 after LASIK by Orbscan and Sirius was 39.23±1.7D (range from 35.98D to 47.05D) and 38.97±1.3D (range from 35.96D to 41.79D) respectively with no statistically significant difference between the values measured by the two methods see Fig. (4).

The mean K2 after LASIK by Orbscan and Sirius was 40.46±1.4D (range from 37.10D to 43.00D) and 40.38±1.4D (range from 36.99D to 43.72D) respectively with no statistically significant difference between the values measured by the two methods.

The mean topographic cylinder after LASIK by Orbscan and Sirius was –0.50±0.3D (range from –1.40D to –0.2D) and -0.35±0.4 D (range from –1.20D to 1.33D) respectively with no statistically significant difference between the values measured by the two methods.

The mean surface irregularity after LASIK by Orbscan within ±3mm zone 1.3±0.3 (range from 0.9 to 2). Surface irregularity has benefit to detect abnormal corneal topography with normal value about ±2 within 3mm zone or ±2.5 within 5mm zone. It is not present in Sirius but only Orbscan and this is one of advantages of Orbscan.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Y):</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>27.53±3.3</td>
</tr>
<tr>
<td>Range</td>
<td>23 to 35</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9 (60%)</td>
</tr>
<tr>
<td>Female</td>
<td>6 (40%)</td>
</tr>
</tbody>
</table>

Table (2): Mean, standard deviation, difference of means, limits of agreement, coefficient of repeatability and p-value of highest points on posterior corneal elevation maps by Orbscan and Sirius.

<table>
<thead>
<tr>
<th>Highest points on posterior corneal elevation maps</th>
<th>N</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>Difference of means</th>
<th>Limits of agreement</th>
<th>Coefficient of repeatability</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbscan</td>
<td>30</td>
<td>35.47</td>
<td>11.6</td>
<td>14.53</td>
<td>–8.2 to 37.3</td>
<td>36.20%</td>
<td>0.06</td>
</tr>
<tr>
<td>Sirius</td>
<td>30</td>
<td>9</td>
<td>2.9</td>
<td>8</td>
<td>2.4 to 13.6</td>
<td>16.60%</td>
<td></td>
</tr>
</tbody>
</table>

Table (1): Demographic data (age and sex).

![Fig. (1): Difference of means and limits of agreement of highest points on posterior corneal elevation maps by Sirius.](image1)

![Fig. (2): Difference of means and limits of agreement of highest points on posterior corneal elevation maps by Orbscan.](image2)
Comparison between Posterior Corneal Surface Changes after LASIK Measured

Discussion

Vicente D, et al. [7] defined the posterior corneal elevation by the maximum forward protrusion of the posterior cornea above the Best-Fit Sphere (BFS) in the central 4.0mm zone of topography (highest point on posterior elevation map) [7].

Hashemi & Mehravaran [6] compared between orbscan & pentacam in the accuracy of evaluation of posterior corneal changes after laser vision correction; they found that compared to the Pentacam, the Orbscan II yielded larger posterior elevation values before and after surgery and significant postoperative changes in Posterior Central Elevation (PCE) and Posterior Maximal Elevation (PME) [6].

Pérez-Escudero et al., [9] found that there is no evidence of surgically induced changes in the corneal posterior surface beyond 1 week after surgery. They concluded that Pentacam Scheimpflug system can be used reliably to assess changes in the posterior corneal radius of curvature after LASIK [9].

The results of our study disagreed with Berthold Seitz et al., [5] who concluded in their study on the posterior corneal curvature after LASIK in myopic eyes using Orbscan system that the posterior corneal curvature changes suggested that mild “keratectasia” of the cornea may be common early after LASIK as they examined the cases 3 months post-operative, also they suggested that further studies with longer follow-up are required to clarify whether this biomechanical deformation is progressive and whether a residual stromal bed of >250 µm can completely prevent it. In that study they had a mean Residual Stromal Bed (RSB) after LASIK of 280±42 µm with some cases have RSB less than 250 µm which seems to be risky but in our study we had a RSB more than 300 µm whereas, Zhang & Wang [8] found that the displacement in the posterior corneal surface measured by Scheimpflug imaging (Pentacam) after LASIK was observed as time-dependent changes that protruded at an early stage but then returned to original levels 6 months after surgery [8].

Khyrat et al., [10] in their study for the changes that occur in the posterior corneal surface after Laser-Assisted In-Situ Keratomileusis (LASIK) for correction of myopia using Pentacam; found that post-LASIK changes of the posterior corneal surface affect mainly the vertical curvature, asphericity, and posterior corneal elevation. Fortunately, no case of post-LASIK ectasia was observed during the follow-up period of this study. Further studies are needed to document posterior corneal surface changes in patients with suspected post-LASIK ectasia [10].

Hernández-Quintela et al., [11] in their study to examine the histologic and ultrastructural features of human corneas after successful Laser In Situ Keratomileusis (LASIK); found that Permanent pathologic changes were present in all post-LASIK corneas. These changes were most prevalent in the lamellar interface wound. These changes along with other pathologic alterations in post-LASIK
Ahmed F. Heikal, et al. 2525

corneas may change the functionality of the cornea after LASIK [11].

Conclusion:

There was no statistically significant difference between the values measured by Orbscan IIz and Sirius (p-value 0.06). The coefficient of repeatability was 36.20% by Orbscan and 16.60% Sirius, hence Orbscan is better than Sirius. Surface irregularity has benefit to detect abnormal corneal topography with normal value about ±2 within 3mm zone or ±2.5 within 5mm zone. It is not present in Sirius but only Orbscan and this is one of advantages of Orbscan.

Recommendations:

Further studies on the changes in the posterior cornea after correction of higher errors of refraction with LASIK and comparison them with preoperative posterior elevations by Orbscan IIz and Sirius.

References

المقارنة بين تغييرات السطح الخلفي للقرنية بعد الليزر

باً داعدة جهاز السيريز بنتاكام والأوريسكان 2

هدف البحث هو تقييم تغييرات السطح الخلفي للقرنية بعد الليزر. تشمل هذه النتائج العديد من الجوانب مثل انخفاض أعلى للفارغ وارتفاع أعلى للفارغ وارتفاع أعلى للفارغ. هذه النتائج تدعم فكرة تأثير الليزر على السطح الخلفي للقرنية بشكل مباشر وفعال. وتوضح هذه النتائج أن تغييرات السطح الخلفي للقرنية بعد الليزر يمكن أن تكون مفيدة لل прогноз والعلاج. هذه النتائج تدعم استخدامة في الاستشارات والدراسات المستقبلية. }

المقدمة:

القرنية كجزء من القرنية الأمامية، هي ناجية عن تأثيرات الليزر. تتغير القرنية بعد الليزر، وهو ما يؤثر على الشفافية والوضوح. تتأثر نتائج الليزر في القرنية الخلفية بعوامل عديدة مثل نوع الليزر، ومقدار الليزر، ونوع القرنية الأمامية. تتميز تغييرات السطح الخلفي للقرنية بعد الليزر بالكثير من الجوانب، بما في ذلك ارتفاع أعلى للفارغ وارتفاع أعلى للفارغ وارتفاع أعلى للفارغ. تؤثر هذه التغييرات بشكل كبير على الشفافية والوضوح، مما يؤثر على القدرة على الاستشعار والرؤية. تساعد هذه النتائج في التخطيط لعلاجات الليزر، وتوفر نظرة عميقة على تأثيرات الليزر على القرنية الخلفية. هذا البحث يمكن أن يساعد في تطوير تقنيات الليزر المستقبلية، وتنمية القدرات الطبية في تشخيص وتقييم تغييرات السطح الخلفي للقرنية بعد الليزر.